Multivariate Spatial Outlier Detection
نویسندگان
چکیده
A spatial outlier is a spatially referenced object whose non-spatial attribute values are significantly different from the values of its neighborhood. Identification of spatial outliers can lead to the discovery of unexpected, interesting, and useful spatial patterns for further analysis. Previous work in spatial outlier detection focuses on detecting spatial outliers with a single attribute. In the paper, we propose two approaches to discover spatial outliers with multiple attributes. We formulate the multi-attribute spatial outlier detection problem in a general way, provide two effective detection algorithms, and analyze their computation complexity. In addition, using a real-world census data, we demonstrate that our approaches can effectively identify local abnormality in large spatial data sets.
منابع مشابه
Chapter 1 OUTLIER DETECTION
Outlier detection is a primary step in many data-mining applications. We present several methods for outlier detection, while distinguishing between univariate vs. multivariate techniques and parametric vs. nonparametric procedures. In presence of outliers, special attention should be taken to assure the robustness of the used estimators. Outlier detection for data mining is often based on dist...
متن کاملIdentification of outliers types in multivariate time series using genetic algorithm
Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...
متن کاملNonparametric Depth-Based Multivariate Outlier Identifiers, and Robustness Properties
In extending univariate outlier detection methods to higher dimension, various special issues arise, such as limitations of visualization methods, inadequacy of marginal methods, lack of a natural order, limited scope of parametric modeling, and restriction to ellipsoidal contours when using Mahalanobis distance methods. Here we pass beyond these limitations via an approach based on depth funct...
متن کاملNonparametric Depth-Based Multivariate Outlier Identifiers, and Masking Robustness Properties
In extending univariate outlier detection methods to higher dimension, various issues arise: limited visualization methods, inadequacy of marginal methods, lack of a natural order, limited parametric modeling, and, when using Mahalanobis distance, restriction to ellipsoidal contours. To address and overcome such limitations, we introduce nonparametric multivariate outlier identifiers based on m...
متن کاملShape-Based Myocardial Contractility Analysis Using Multivariate Outlier Detection
This paper presents a new approach to regional myocardial contractility analysis based on inter-landmark motion (ILM) vectors and multivariate outlier detection. The proposed spatio-temporal representation is used to describe the coupled changes occurring at pairs of regions of the left ventricle, thus enabling the detection of geometrical and dynamic inconsistencies. Multivariate tolerance reg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal on Artificial Intelligence Tools
دوره 13 شماره
صفحات -
تاریخ انتشار 2004